

World Ranking List

FSG Academy – Main Workshop for FSG 2026 on 25th of October 2025 at ZEISS in Oberkochen

About

WRL-C

-C WRL-E

Formula Student Electric - World Ranking List

307 | 2024-10-26 | 0,85 | CN 305 | 2024-09-14 | 0,90 | JP 304 | 2024-09-08 | 0,93 | IT 302 | 2024-08-25 | 0,85 | AA 300 | 2024-08-18 | 0,94 | DE 299 | 2024-08-10 | 0,90 | CZ 297 | 2024-08-07 | 0,85 | ES 295 | 2024-08-03 | 0,94 | EA 293 | 2024-07-25 | 0,93 | AT 291 | 2024-07-21 | 0,85 | UK 290 | 2024-07-18 | 0,93 | NL 289 | 2024-07-17 | 0,85 | CH 288 | 2024-06-15 | 0,95 | MI

Formula SAE® Australasia 2024

(Pure Electric Event) https://saea.com.au/formula-sae-a

SUM top10 event: 5.242,0405 SUM top10 wrl ID 307: 6.976,0073 => competitiveness of competition: 0,7514 * 0,375 + 0,625 = 0,9068

22 teams at competition (result > 0): kml for google earth 403 teams in WRL: kml for google earth

2023-12-17 > Season 1 ≥ 2024-12-08 2022-12-11 > Season 2 ≥ 2023-12-17 2019-12-08 > Season 3 ≥ 2022-12-11

WRL ID 308 | 2024-12-08 | c 0,91 | AU

rank	wrp	cn	university name	team	Α
1	778,36	EE	Tallinn TU UAS	FSG	Α
2	774,17	AT	Fachhochschule Joanneum Graz	FSG	Α
3	766,88	CH	ETH Zürich	FSG	Α
4	735,74	DE	Westsächsische Hochschule Zwickau	FSG	Α
5	704,87	AT	Technische Universität Graz	FSG	Α
6	692,72	US	Rochester Institute of Technology		Α
7	672,00	NZ	University of Auckland	-	Α
8	646,21	US	University of Pittsburgh		Α
9	630,10	NZ	University of Canterbury	FSG	Α
10	629,33	US	Georgia Institute of Technology	-	Α
11	628,97	ΑU	University of Queensland	22	Α
12	598,33	AU	The University of Newcastle	-	Α
13	597,14	DE	Karlsruhe Institute of Technology	FSG	Α
14	594,14	US	Carnegie Mellon University	FSG	Α
15	590,36	US	University of Washington	FSG	Α
16	586,28	AU	Monash University	FSG	Α
17	584,50	CZ	Czech Technical University in Prague	FSG	Α
18	580,76	AU	Curtin University	, ,,, ,	Α
19	571,29	JP	Nagoya University	1 <u>122</u>	Α
20	569 11	LIC	Virginia Polytechnic Institute and State University	2000	Λ

Overall Results Formula SAE® Australasia 2024

City/Univ	place	cost	bp	ed	acc	sp	autox	endu	eff	pen	total
Melbourne Monash	1.	10.	1.	1.	2.	1.	1.	3.	9.	0	863
Auckland U	2.	16.	2.	2.	1.	4.	2.	4.	10.	0	795
Bentley U Curtin	3.	3.	3.	10.	9.	6.	3.	6.	7.	0	759
Callaghan NCL	4.	8.	14.	12.	4.	9.	8.	5.	4.	0	734
Brisbane UQ	5.	1.	18.	5.	13.	10.	4.	1.	5.	0	726
Christchurch UC	6.	4.	5.	11.	8.	5.	=	8.	1.	0	685
Wollongong UOW	7.	7.	11.	8.	14.	12.	11.	2.	3.	0	677
Perth UWA	8.	9.	13.	4.	6.	3.	6.	10.	8.	0	625
Adelaide U	9.	12.	17.	9.	11.	11.	5.	7.	11.	0	603
Sandy Bay U Tas	10.	2.	7.	14.	5.	7.	2	9.	2.	0	578
Sydney UNSW	11.	6.	6.	3.	7.	2.	9.	12.	-	0	482
Melbourne RMIT	12.	18.	10.	5.	10.	13.	7.	13.	0.700	0	362
Taipei TU	13.	-	21.	20.	12.	8.	10.	11.	6.	0	356
Melbourne Swinburne	14.	15.	20.	7.	3.	0.00	-	-	-	0	294
Brisbane TU	15.	5.	4.	15.	15.	1	_	2	_	0	260
Nathan Griffith	16.	11.	12.	15.	-	-	12.	-	-	0	233
Melbourne U	17.	13.	16.	13.	-	-	=	14.	-	0	223
Hamilton Waikato	18.	14.	15.	17.	92	121	2	=	123	0	215

Thought Experiment No Exchange with other Competitions

Overall Results

FS Eifel Competitiveness: 0.85

rank	pts	university name	
1	950	Uni of Deutz	
2	900	Uni of John Deere	
3	890	Uni of Massey Ferguson	
4	880	Uni of New Holland	
5	870	Uni of JCB	
6	860	Uni of Fendt	
7	850	Uni of Same	
8	840	Uni of Eicher	
9	830	Uni of Hanomag	
10	820	Uni of Valtra	

World Ranking List

rank	wrp	cn	university name
	1	807,5	Uni of Deutz
	2	778,36 EE	Tallinn TU UAS
	3	774,17AT	Fachhochschule Joanneum Graz
	4	766,88 CH	ETH Zürich
	5	765	Uni of John Deere
	6	756,5	Uni of Massey Ferguson
	7	748	Uni of New Holland
	8	739	Uni of JCB
	9	735,74 DE	Westsächsische Hochschule Zwickau
1	.0	731	Uni of Fendt
1	.1	722,5	Uni of Same
1	.2	714	Uni of Eicher
1	.3	705,5	Uni of Hanomag
1	.4	704,87AT	Technische Universität Graz
1	.5	697	Uni of Valtra
1	.6	692,72US	Rochester Institute of Technology

Competitiveness of next FS Eifel → 0.99

World Ranking List

rank	wrp	cn	university name
:	1	950	Uni of Deutz
2	2	900	Uni of John Deere
	3	890	Uni of Massey Ferguson
4	4	880	Uni of New Holland
!	5	870	Uni of JCB
(6	860	Uni of Fendt
7	7	850	Uni of Same
8	8	840	Uni of Eicher
9	9	830	Uni of Hanomag
10	0	820	Uni of Valtra
1	1	778,36 EE	Tallinn TU UAS
1.	2	774,17 AT	Fachhochschule Joanneum Graz
1.	3	766,88 CH	ETH Zürich
1	4	735,74 DE	Westsächsische Hochschule Zwickau
1.	5	704,87 AT	Technische Universität Graz
1	6	692,72US	Rochester Institute of Technology

Competitiveness of FS Eifel → 1

Point Distribution of FS Eifel

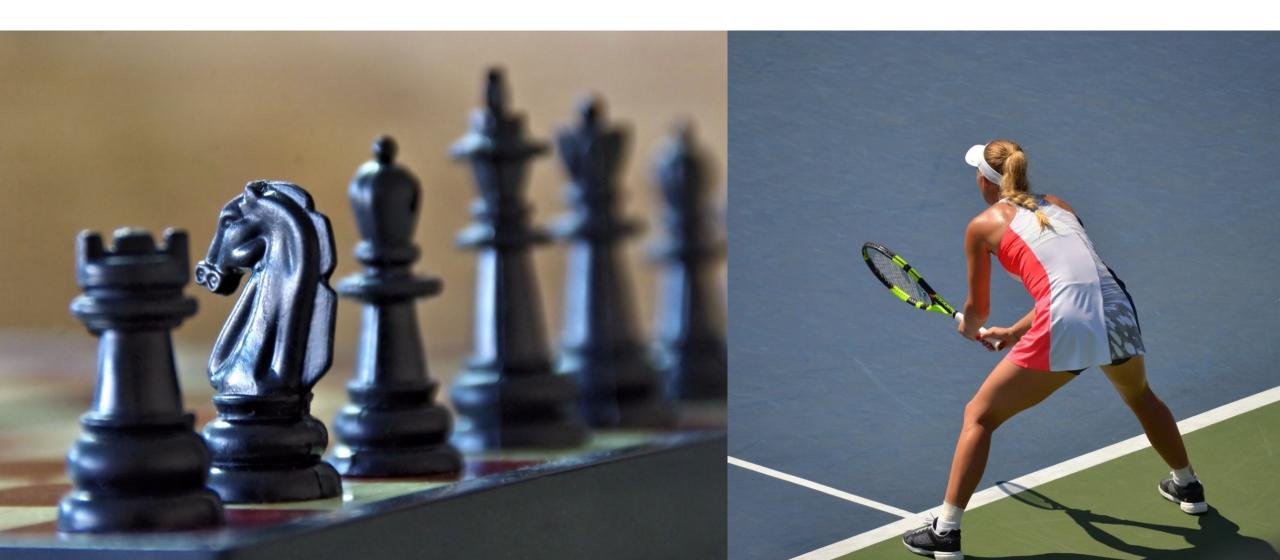
Cost	ВР	ED	SP	DV SP	Acc	DV Acc	AutoX	Endu	Eff
700	0	0	100	0	100	0	0	100	0

Goal

Give the best possible estimation of the performane of each team compared to all other teams in the world

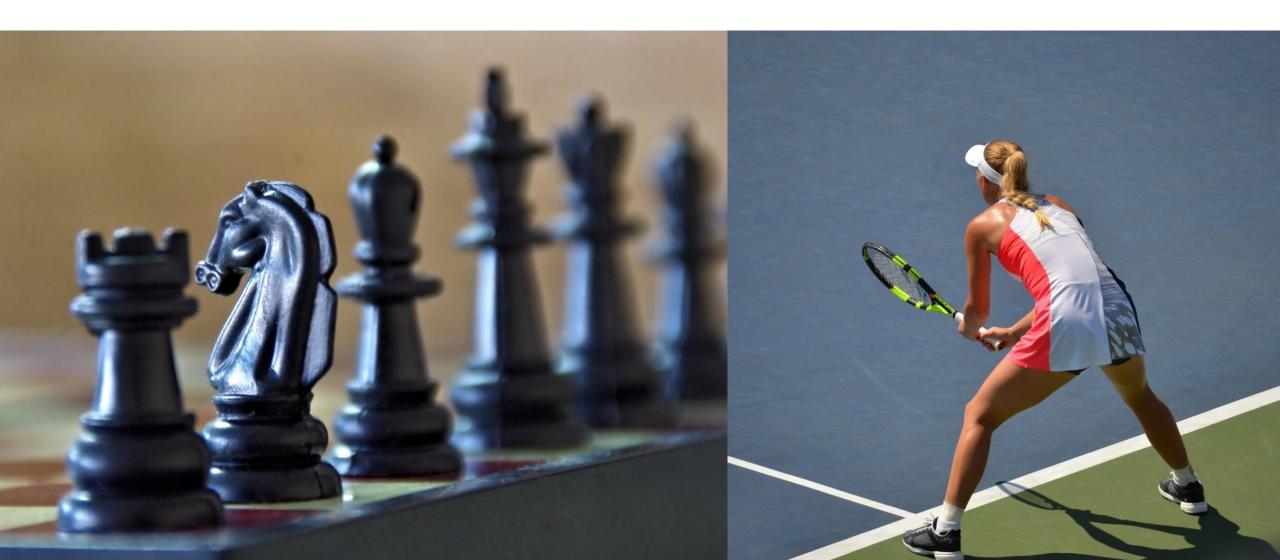
What are the main Goals for a FS World Ranking List?

Goal



- Fair comparison between the team performances
 - Asses according to common performance standard
- Meaningfull Score
 - Score can be interpreted by the community
- Asses team performance
 - Asses performance over one season
- Find the balance between beeing too volatile and too constant

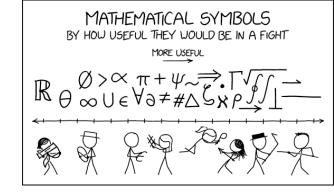
Formula

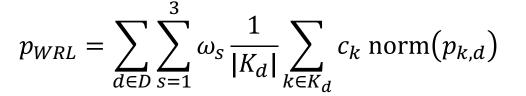

Existing Solutions

Current Rankings

	TEAM	hide legacy teams	ELO RATING	COMPETITIONS
1	сн <u>ETH Zürich</u>		2254	54
2	ат <u>Fachhochschule Joanneum Graz</u>		2207	13
3	п <u>Politecnico di Milano</u>		2176	18
4	Dε <u>Universität Stuttgart</u>		2158	51
5	DE <u>Technical University of Munich</u>		2147	45
6	DE <u>Duale Hochschule Baden-Württemberg Stuttgart</u>		2133	34
7	NL <u>TU Deift</u>		2130	39
8	cz <u>Czech Technical University in Prague</u>		2122	33
9	NO Norwegian University of Science and Technology		2118	28
10	EE <u>Tallinn TU UAS</u>		2117	39
11	DE Rheinisch-Westfälische Technische Hochschule Aachen		2113	31
12	DE <u>Hochschule Esslingen</u>		2097	32
13	se <u>Chalmers University of Technology</u>		2087	16
14	DE <u>Ostbayerische Technische Hochschule Amberg-Weiden (OTH)</u>		2074	31
15	ат <u>Leopold-Franzens-Universität Innsbruck</u>		2054	13
16	ca <u>École Polytechnique de Montréal</u>		2006	10
17	us <u>Georgia Institute of Technology</u>		1999	5
18	DE <u>Technische Universität Berlin</u>		1996	23
19	ат <u>Technische Universität Wien</u>		1987	33
20	DE Karlsruhe Institute of Technology		1982	45
21	us <u>San José State University</u>		1981	7
22	ат <u>Technische Universität Graz</u>		1971	24
23	au <u>Monash University</u>		1969	12
24	us <u>Rochester Institute of Technology</u>		1965	3

Existing Solutions





Explanation Speed

xkcd.com

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Sum over all Disciplines

$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Sum over all Disciplines
$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_{s} \frac{1}{|K_{d}|} \sum_{k \in K_{d}} c_{k} \operatorname{norm}(p_{k,d})$$
 One Discipline

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Sum over 3 seasons
$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_S - normalized season weight $\rightarrow \omega_S = \frac{4}{7} \left[1 \ \frac{1}{2} \ \frac{1}{4} \right]$

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Sum over 3 seasons Mean over event results
$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Sum over 3 seasons

Mean over event results

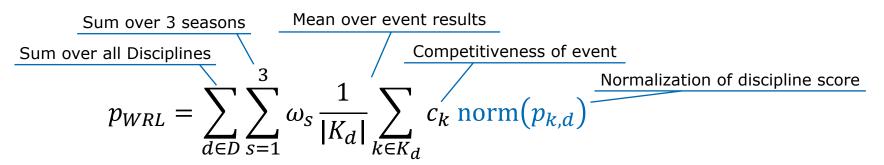
Competitiveness of event

$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k


D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

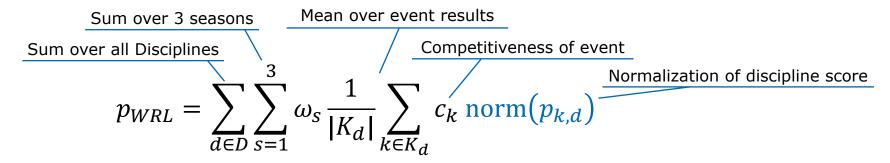
 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k


D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

with

$$\operatorname{norm}(p_{k,d}) = \max(p_{k,d}, 0) \frac{\bar{p}_{r,d}}{\bar{p}_{k,d}}$$

 $p_{k,d}$ - Points in discipline d at competition k

 $\bar{p}_{k,d}$ - Max possible points in discipline d at competition k

 $\bar{p}_{r,d}$ - Max possible points in discipline d according to FS Rules

Competitiveness

$$c_k = \frac{\sum_{T_k} con_{T_k} \cdot p_{WRL}(T_k)}{\sum_{T_w} con_{T_w} \cdot p_{WRL}(T_w)}$$

with

con - Connectivity of team

 p_{WRL} - points in World Ranking List

 T_k - Set of top teams in competition k such that $\sum_{T_k} con_{T_k} = 3$

 T_w - Set of top teams in World Ranking list such that $\sum_{T_w} con_{T_w} = 3$

- Competitiveness is similar to old competitiveness, but teams are scaled according to their connectivity
- → No limiting of the competitiveness like in old formula

Competitiveness

$$c_k = \frac{\sum_{T_k} con_{T_k} \cdot p_{WRL}(T_k)}{\sum_{T_w} con_{T_w} \cdot p_{WRL}(T_w)}$$

with

con - Connectivity of team

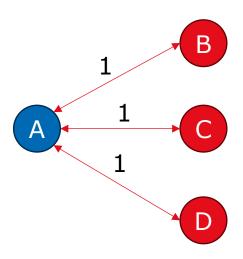
 p_{WRL} - points in World Ranking List

 T_k - Set of top teams in competition k such that $\sum_{T_k} con_{T_k} = 3$

 T_w - Set of top teams in World Ranking list such that $\sum_{T_w} con_{T_w} = 3$

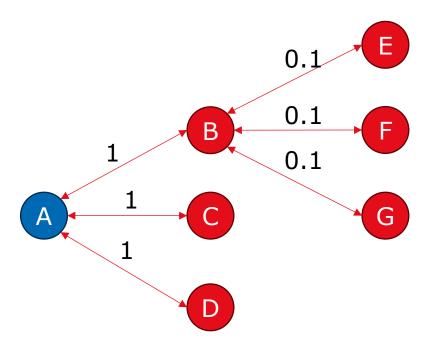
Competitiveness is similar to old competitiveness, but teams are scaled according to their connectivity

→ No limiting of the competitiveness like in old formula

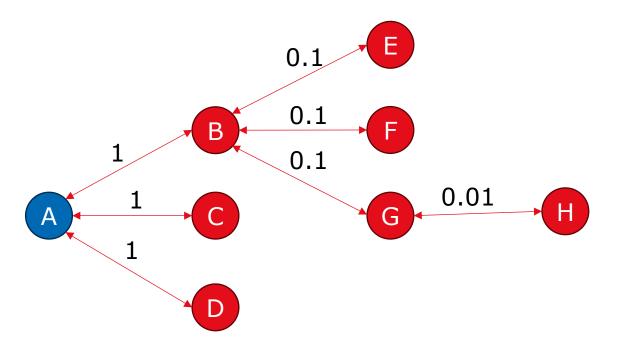

If sum of connectivity of all teams in an event is $\sum con < 3$, the competitiveness will be computed over the available sum of connectivity, but at least over $\sum con = 1$

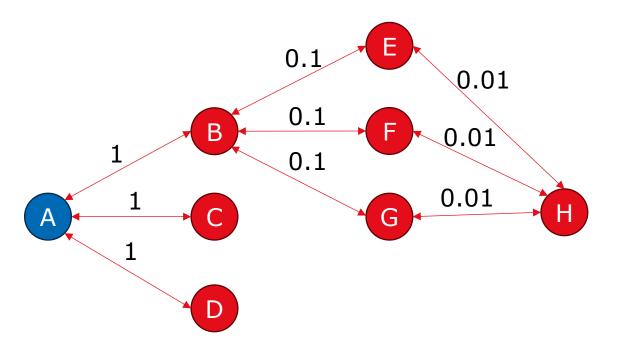
- A team which directly competed with all other teams in the WRL*
- A team which indirectly competed with all other teams in the WRL*
- A team which double indirectly competed with all other teams in the WRL*
- A team which double indirectly competed with all other teams in the WDL?
- \rightarrow Connectivity: con = 1
- \rightarrow Connectivity: con = 0.1
- \rightarrow Connectivity: con = 0.01

At maximum three hops (double indirect) are considered

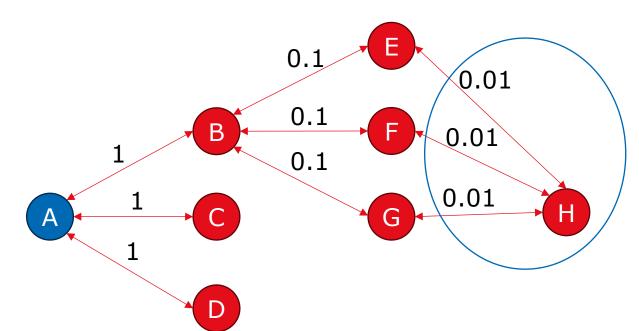

Author: Formula Student Germany

^{*} Teams which have >0pts in all static disciplines and >0pts in the endurance in WRL


Connectivity:
$$con_A = \frac{1}{3}(1+1+1) = 1$$

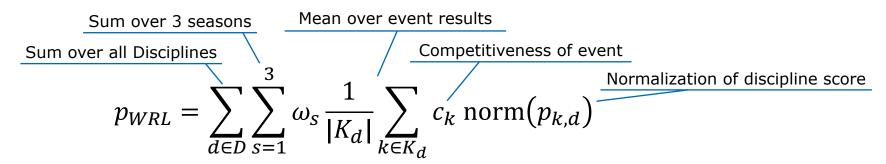


Connectivity:
$$con_A = \frac{1}{6}(3 \cdot 1 + 3 \cdot 0.1) = \frac{3.3}{6} = 0.55$$



Connectivity:
$$con_A = \frac{1}{6}(3 \cdot 1 + 3 \cdot 0.1 + 1 \cdot 0.01) = \frac{3.31}{7} \approx 0,473$$

Connectivity:
$$con_A = \frac{1}{6}(3 \cdot 1 + 3 \cdot 0.1 + 3 \cdot 0.01) = \frac{3.33}{7} \approx 0,476$$



Connectivity Weight $A \Leftrightarrow H = 0.03$

The connectivity weight cannot be higher than the weight of the next lower level.

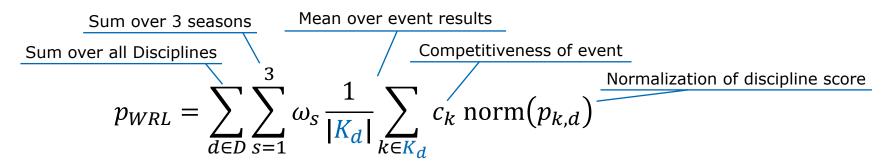
Here $A \Leftrightarrow H = 0.03 \leq^! 0.1$

Connectivity:
$$con_A = \frac{1}{6}(3 \cdot 1 + 3 \cdot 0.1 + 3 \cdot 0.01) = \frac{3.33}{7} \approx 0,476$$

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k


D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

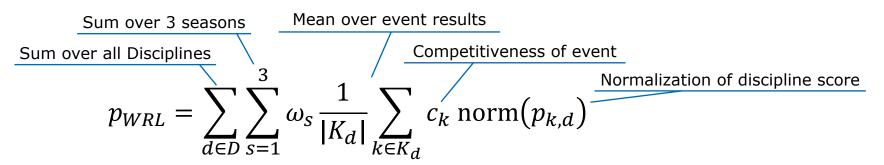
s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

 c_k - competitiveness of competition k

Subset *K_d*


- Use events that scored the discipline
- If there are more than two discipline scores:
 - Uset the two discipline scores of the competition with the highest competitiveness
 - Only use those remaining competitions, where the team could have improved the WRL event score. I.e. $c_k \cdot \bar{p}_{r,d} > p_{WRL,d}$ without the competition k

with

 c_k - competitiveness of competition k

 $\bar{p}_{r,d}$ - Max possible points in discipline d

 $p_{WRL,d}$ - WRL points in discipline d

with

 p_{WRL} - Points of team in World Ranking List

 $p_{k,d}$ - Points in discipline d at competition k

D - Set of all disciplines in Formula Student

s - season

 ω_s - normalized season weight

 K_d - (Sub)set of competitions which are taken into account for discipline d

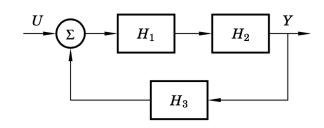
 c_k - competitiveness of competition k

Goal

$$\frac{\text{Sum over 3 seasons}}{\text{Sum over all Disciplines}} \frac{\text{Mean over event results}}{\text{of Season}} \frac{\text{Competitiveness of event}}{\text{Normalization of discipline score}}$$

$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

- Fair comparison between the team performances
 - Asses according to common performance standard
- Meaningfull Score
 - Score can be interpreted by the community
- Asses team performance
 - Asses performance over one season
- Find the balance between beeing too volatile and too constant


Contact

Feedback, questions, help:

wrl@fs-world.org

$$p_{WRL} = \sum_{d \in D} \sum_{s=1}^{3} \omega_s \frac{1}{|K_d|} \sum_{k \in K_d} c_k \operatorname{norm}(p_{k,d})$$

